71.5k views
5 votes
Find the value of x in each pair of similar figures. Use proportions to solve.

Find the value of x in each pair of similar figures. Use proportions to solve.-example-1

2 Answers

3 votes

The x in the first triangle is: 6. The value of x in the second triangle is 8.33 meters.

To solve for x, we can use the following proportion:

corresponding side in first figure / corresponding side in second figure = first figure's scale / second figure's scale

In the first pair of figures, we have:

Corresponding side in first figure: 3 m (side AB)

Corresponding side in second figure: x m (side DE)

First figure's scale: 1 (given)

Second figure's scale: 2 (given)

Setting up the proportion, we get:

3 m / x m = 1 / 2

Cross-multiplying, we get:

3 * 2 = x

Therefore, x = 6.

The two figures in the image are similar triangles. Corresponding sides of similar triangles are in proportion.

In the first triangle, the side lengths are labeled as 3 meters, 5 meters, and 9 meters. Let the side lengths of the second triangle be x meters, 6 meters, and 15 meters.

Setting up the proportion of corresponding sides:

x / 5 = 3 / 9

Cross-multiplying:

9x = 15 * 5

9x = 75

Divide both sides by 9:

x = 75 / 9

x = 8.33 meters

Therefore, the value of x in the second triangle is 8.33 meters.

User Michael Kazarian
by
5.1k points
3 votes
Answer:

5•3=x/15

Explanation:
User Edelwater
by
4.9k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.