23.3k views
1 vote
(4-x)/(x^2-5x+4)+(2)/(x-1)=1

show all steps please!!

1 Answer

6 votes

Answer:


x = 2, 4

Explanation:

Given :


(4-x)/(x^(2) -5x+4) + (2)/(x-1) =1

=============================================================

Factorize the denominator of the first term :

⇒ x² - 5x + 4

⇒ x² - x - 4x + 4

⇒ x(x - 1) - 4(x - 1)

⇒ (x - 4)(x - 1)

============================================================

Hence, the equation now is :


(4-x)/((x-1)(x-4)) + (2)/(x-1) =1

============================================================

Multiply the second term by (x - 4) in the numerator and denominator :


(4-x)/((x-1)(x-4)) + (2(x-4))/(x-1(x-4)) =1

============================================================

Combine the numerator of both terms and bring the denominator to the other side :


(4-x+2(x-4))/((x-1)(x-4)) = 1


4 - x+2x-8 = x^(2) - 5x + 4


x - 4 = x^(2) - 5x + 4


x^(2) -5x-x+4+4=0


x^(2) -6x+8=0


(x-4)(x-2)=0


x = 2, 4

User Mfonda
by
8.1k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories