23.2k views
1 vote
(4-x)/(x^2-5x+4)+(2)/(x-1)=1

show all steps please!!

1 Answer

6 votes

Answer:


x = 2, 4

Explanation:

Given :


(4-x)/(x^(2) -5x+4) + (2)/(x-1) =1

=============================================================

Factorize the denominator of the first term :

⇒ x² - 5x + 4

⇒ x² - x - 4x + 4

⇒ x(x - 1) - 4(x - 1)

⇒ (x - 4)(x - 1)

============================================================

Hence, the equation now is :


(4-x)/((x-1)(x-4)) + (2)/(x-1) =1

============================================================

Multiply the second term by (x - 4) in the numerator and denominator :


(4-x)/((x-1)(x-4)) + (2(x-4))/(x-1(x-4)) =1

============================================================

Combine the numerator of both terms and bring the denominator to the other side :


(4-x+2(x-4))/((x-1)(x-4)) = 1


4 - x+2x-8 = x^(2) - 5x + 4


x - 4 = x^(2) - 5x + 4


x^(2) -5x-x+4+4=0


x^(2) -6x+8=0


(x-4)(x-2)=0


x = 2, 4

User Mfonda
by
3.4k points