8.7k views
6 votes
Verify that (cos²a) (2 + tan² a) = 2 - sin² a....


User Mohamagdy
by
4.5k points

2 Answers

10 votes

Answer:

See below ~

Explanation:

Identities used :

⇒ cos²a = 1 - sin²a

⇒ tan²a = sin²a / cos²a

============================================================

Solving :

⇒ (cos²a) (2 + tan² a)

⇒ 2cos²a + (cos²a)(tan²a)

⇒ 2(1 - sin²a) + sin²a

⇒ 2 - 2sin²a + sin²a

2 - sin²a [∴ Proved √]

User Denis Koreyba
by
4.5k points
7 votes

Trigonometric Formula's:


\boxed{\sf \ \sf \sin^2 \theta + \cos^2 \theta = 1}


\boxed{ \sf tan\theta = (sin\theta)/(cos\theta) }

Given to verify the following:


\bf (cos^2a) (2 + tan^2 a) = 2 - sin^2 a


\texttt{\underline{rewrite the equation}:}


\rightarrow \sf (cos^2a) (2 + (sin^2 a)/(cos^2 a) )


\texttt{\underline{apply distributive method}:}


\rightarrow \sf 2 (cos^2a) + ((sin^2 a)/(cos^2 a) ) (cos^2a)


\texttt{\underline{simplify the following}:}


\rightarrow \sf 2cos^2 a + sin^2 a


\texttt{\underline{rewrite the equation}:}


\rightarrow \sf 2(1 - sin^2a ) + sin^2 a


\texttt{\underline{distribute inside the parenthesis}:}


\rightarrow \sf 2 - 2sin^2a + sin^2 a


\texttt{\underline{simplify the following}} :


\rightarrow \sf 2 - sin^2a

Hence, verified the trigonometric identity.

User Erling Olsen
by
4.8k points