Answer:
Solving the equation
using quadratic formula we get
![x=4+5i \ or \ x=4-5i](https://img.qammunity.org/2021/formulas/mathematics/high-school/s9zdmvbtc4li2cxzuza5q83ze9tv3h6wsy.png)
Explanation:
We need to solve the equation
using quadratic formula.
The quadratic formula is:
![$x=(-b\pm√(b^2-4ac))/(2a)$](https://img.qammunity.org/2021/formulas/mathematics/middle-school/ye6x873fqejcv8fzlwz5fdgglwrn4ny1ec.png)
where a=1, b=-8 and c=41
Putting values in formula and finding x
![$x=(-b\pm√(b^2-4ac))/(2a)$\\$x=(-(-8)\pm√((-8)^2-4(1)(41)))/(2(1))$\\$x=(8\pm√(64-164))/(2)$\\$x=(8\pm√(-100))/(2)$\\We \ know \ √(-1)=i\\x=(8\pm10i)/(2)\\x=(8+10i)/(2) \ or \ x=(8-10i)/(2)\\x=4+5i \ or \ x=4-5i](https://img.qammunity.org/2021/formulas/mathematics/high-school/zmo0oinqzp3gd1wymqme0sl22dhns6nzp3.png)
So, Solving the equation
using quadratic formula we get
![x=4+5i \ or \ x=4-5i](https://img.qammunity.org/2021/formulas/mathematics/high-school/s9zdmvbtc4li2cxzuza5q83ze9tv3h6wsy.png)