Answer:
![Mean = 4](https://img.qammunity.org/2021/formulas/mathematics/college/k3grdn29jekz21r9vhglelt95md12tb3r1.png)
![Var = (25)/(12)](https://img.qammunity.org/2021/formulas/mathematics/college/sgejkd8zd5efiuaqql8p6tbpivdsdnvpr2.png)
Explanation:
Given
Codes: 2,3,4,5,6
Required
Determine the Mean and Variance
Equally likely implies that the data follows a uniform distribution.
So,
![Mean = (a+b)/(2)](https://img.qammunity.org/2021/formulas/mathematics/college/bnxu78rxlu6cuid01d76l7gg8w0ppbuxhw.png)
Where
![a = Lower\ Bound = 2](https://img.qammunity.org/2021/formulas/mathematics/college/ro83jz6t3d732bveyvi1cvm1ibmbxol2x9.png)
![b = Upper\ Bound = 6](https://img.qammunity.org/2021/formulas/mathematics/college/4r0qycz618hucvmrzjgv54vsae7ijuabk6.png)
![Mean = (a+b)/(2)](https://img.qammunity.org/2021/formulas/mathematics/college/bnxu78rxlu6cuid01d76l7gg8w0ppbuxhw.png)
![Mean = (2 + 6)/(2)](https://img.qammunity.org/2021/formulas/mathematics/college/jivz3nc8b09gcij73p3cpnecgvf2okvaoo.png)
![Mean = (8)/(2)](https://img.qammunity.org/2021/formulas/mathematics/college/i3894k9dc2girea8kjzzrqflilo3xqsc5r.png)
![Mean = 4](https://img.qammunity.org/2021/formulas/mathematics/college/k3grdn29jekz21r9vhglelt95md12tb3r1.png)
Variance of a uniform distribution is calculated as thus;
![Var = ((b-a+1)^2)/(12)](https://img.qammunity.org/2021/formulas/mathematics/college/nouych3hrnrpzgb9dhvhylifn6bjib5xxx.png)
Substitute values for a and b
![Var = ((6-2+1)^2)/(12)](https://img.qammunity.org/2021/formulas/mathematics/college/koeqzq08988okcdtr68ph6txrjgie4fjck.png)
![Var = (5^2)/(12)](https://img.qammunity.org/2021/formulas/mathematics/college/5v123d7zb8ujvkcjznnfnq5fasvlirar9v.png)
![Var = (25)/(12)](https://img.qammunity.org/2021/formulas/mathematics/college/sgejkd8zd5efiuaqql8p6tbpivdsdnvpr2.png)