183k views
2 votes
Divide Rational Expressions
In the following exercises, divide.

Divide Rational Expressions In the following exercises, divide.-example-1

1 Answer

3 votes

Answer:


\displaystyle \mathbf{(5)/((c+4))}

Explanation:

Division of Rational Expressions

When dividing two rational expressions like f(c) / g(c), it's usually easier to multiply the numerator by the reciprocal of the denominator: f(c) * (1/g(c)). The reciprocal is just flipping the numerator and the denominator.

Let's find the following division:


\displaystyle \frac{(c^2-64)/(3c^2+26c+16)} {(c^2-4c-32)/(15c+10)}

First, we factor the polynomials where possible.


c^2-64 = (c-8)(c+8)


3c^2+26c+16=(3c+2)(c+8)


c^2-4c-32=(c-8)(c+4)


15c+10=5(3c+2)

Substituting:


\displaystyle \frac{(c^2-64)/(3c^2+26c+16)} {(c^2-4c-32)/(15c+10)}=\frac{((c-8)(c+8))/((3c+2)(c+8))} {((c-8)(c+4))/(5(3c+2))}

Multiplying by the reciprocal of the denominator:


\displaystyle \frac{(c^2-64)/(3c^2+26c+16)} {(c^2-4c-32)/(15c+10)}=((c-8)(c+8))/((3c+2)(c+8))\cdot (5(3c+2))/((c-8)(c+4))

Simplifying by (c+8)(3c+2)(c-8):


\displaystyle \frac{(c^2-64)/(3c^2+26c+16)} {(c^2-4c-32)/(15c+10)}=(5)/((c+4))

Answer:


\displaystyle \mathbf{\mathbf{(5)/((c+4))}}

User Gautam Chibde
by
3.8k points