115k views
5 votes
2x^{3}+30xx^{2} +72x=0 solve using zero product property

User Aerik
by
7.9k points

1 Answer

7 votes

Answer:

Values of x are: x=0 or x=-3 or x=-12

Explanation:

The equation given to solve using zero product property is
2x^3+30x^2+72x=0

Zero property rule states that if ab=0 then a=0 or b=0

Taking x common from the equation:


2x^3+30x^2+72x=0\\x(2x^2+30x+72)=0\\

Applying zero product rule


x(2x^2+30x+72)=0\\x=0 \ or \ 2x^2+30x+72=0

Now, solving
2x^2+30x+72=0

Using quadratic formula to find value of x


$x=(-b\pm√(b^2-4ac))/(2a)$

Putting values


$x=(-30\pm√((30)^2-4(2)(72)))/(2(2))$\\$x=(-30\pm√(324))/(4)$\\$x=(-30\pm18)/(4)$\\$x=(-30+18)/(4) \ or \ x=(-30-18)/(4)$ \\x=-3 \ or \ x=-12

So, Values of x are: x=0 or x=-3 or x=-12

User Tariqdaouda
by
8.2k points