152k views
25 votes
Evaluate:


\bf{\sum^6_(n=0\:)(3)^n}



Need help A.S.A.P., thank you! :)

2 Answers

8 votes

Answer:


\boxed{\rm \: SUM = 1093 }

Step-by-step explanation:

Given:


\huge\rm {{ \sum}^6_(n=0\:) (3)^n}

To Find:

Sum of the given finite series

Solution:

We'll use this formula:


\boxed{\rm SUM = a \cdot\bigg( \cfrac{1 - r {}^(n) }{1 - r} \bigg)}

where,

  • a = first term
  • r = ratio in between terms

Let's find out the ratio R by using this formulae:


\rm \: r = \cfrac{a_(n + 1) }{a_n}

According to the question,


  • \rm a_n = 3^n

  • \rm a_(n+1)= 3^(n+1)

Substitute:


\rm \: r = \cfrac{3 {}^(n + 1) }{3 {}^(n) }

Apply law of exponents:[a^m/a^n] = a^m-n


\rm \: r = {3}^(n + 1 - n)

Rearrange it as:


\rm \: r = 3 {}^(n - n + 1)


\rm \: r = 3 {}^(1) = 3

So,the ratio R is 3.

Now let's find out the First term A.

To find, substitute the value of n in 3^n:

  • [It is given that n = 0]


\rm \: a = 3 {}^(0)

  • [x^0 = 1]


\rm \: a = 1

Hence, first term A is 1.

NOW Substitute the value of the first term A and ratio R onto the formulae of sum:


\rm \: a \cdot\bigg( \cfrac{1 - r {}^(n) }{1 - r} \bigg)

  • a = 1
  • r = 3
  • n = 7

Simplify.


\rm SUM = \rm \: 1 * \cfrac{1 - 3 {}^(7) }{ 1 - 1 * 3}


\rm \: SUM = \cfrac{ - 2186}{1 - 3}


\rm \: SUM = \cfrac{ \cancel{ - 2186} \: \: {}^(1093) }{ \cancel{ - 2} \: \: ^(1) }


\rm \: SUM = 1093

We're done!

Hence, the sum of the given Finite series is 1093.


\rule{225pt}{2pt}

User Hassan Tariq
by
8.3k points
6 votes

Answer:

1093

Step-by-step explanation:

Given expression:


  • \sf \huge{ \sum _(n=0)^6\left(3\right)^n}

Summation:


  • \sf a_0+\sum _(n=1)^63^n

Formula:


  • \sf \sum\limits_(i=1)^n x_i = x_1 + x_2 + \dots + x_n

Compute:


\rightarrow \sf 3^0 + 3^1 + 3^2 + 3^3 + 3^4 + 3^5 + 3^6


\rightarrow \sf 1 + 3 + 9 + 27 + 81 + 243 + 729


\rightarrow \sf 1093

User UserAbhi
by
7.4k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories