130k views
3 votes
What is the slope of the line that contains the points (-2, 2) and (3, 4)?

A.
O B. -
O c.
OD.

User Iiirxs
by
7.6k points

2 Answers

4 votes

Answer: m = 2/5

Explanation:

The formula for the slope is m = rise over run = y^2 - y^1 / x^2 - x^2

which makes it 4-2 over 3-(-2) which equals 2/5

Youre answer is 2/5

User Jguerinet
by
8.1k points
5 votes

Answer:

The slope of the line that contains the points (-2, 2) and (3, 4) is 2/5.

Explanation:

The slope of a line is denoted by m and is calculated using the formula:


m = (y_2-y_1)/(x_2-x_1)

Here


(x_1,y_1) are the coordinates of the first point on line and


(x_2,y_2) are the coordinates of the second point on line

Given two points are:

(x1,y1) = (-2, 2)

(x2,y2) =(3, 4)

Putting the values in the formula


m = (4-2)/(3-(-2))\\m = (2)/(3+2)\\m=(2)/(5)

Hence,

The slope of the line that contains the points (-2, 2) and (3, 4) is 2/5.

User Chemitaxis
by
7.8k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories