74.4k views
3 votes
Find the measure of the angle between u = 6i - 3j and

v = 2i+j to the nearest tenth of a degree.

User Gall
by
3.3k points

1 Answer

6 votes

Answer:

θ = 53.1° (to the nearest tenth)

Explanation:

FORMULA :

Let θ be the measure of the angle between U and V :


\cos \theta =\frac{\overrightarrow{U} .\overrightarrow{V} }{\left\Vert \overrightarrow{U} \right\Vert * \left\Vert \overrightarrow{V} \right\Vert }

========================


\overrightarrow{U} * \overrightarrow{V} =6* 2+\left( -3\right) * 1=9


\left\Vert \overrightarrow{U} \right\Vert =\sqrt{6^(2)+\left( -3\right)^(2) } =√(45) =3√(5)


\left\Vert \overrightarrow{U} \right\Vert =\sqrt{2^(2)+\left( 1\right)^(2) } =√(5)


\left\Vert \overrightarrow{U} \right\Vert * \left\Vert \overrightarrow{V} \right\Vert =3√(5) * √(5) = 15

…………………………………………………

Then


\cos \theta =(9)/(15) =(3)/(5)


\theta =\cos^(-1) \left( (3)/(5) \right) =53.130102354156

User Jack Dsilva
by
3.9k points