160k views
4 votes
Air enters a control volume operating at steady state at 1.2 bar, 300K, and leaves at 12 bar, 440K, witha volumetric flow rate of 1.3 m3/min. The work input to the control volume is 240 kJ per kg of air flowing. Neglecting kinetic and potential energy effects, determine the heat transfer rate, in kW.

User Tadeusz
by
5.1k points

1 Answer

2 votes

Answer:

Heat transfer = 2.617 Kw

Step-by-step explanation:

Given:

T1 = 300 k

T2 = 440 k

h1 = 300.19 KJ/kg

h2 = 441.61 KJ/kg

Density = 1.225 kg/m²

Find:

Mass flow rate = 1.225 x [1.3/60]

Mass flow rate = 0.02654 kg/s

mh1 + mw = mh2 + Q

0.02654(300.19 + 240) = 0.02654(441.61) + Q

Q = 2.617 Kw

Heat transfer = 2.617 Kw

User Huaminhluan
by
4.6k points