Answer:
The length and width of the rectangular garden are 20 feet and 10 feet.
Explanation:
Given that the length of fencing = 60 feet
The area of the garden = 200 sq. feet.
As the length of the fencing is equal to the perimeter of the garden, so the perimeter of the rectangular garden is 60 feet.
Let l and b be the length and width of the rectangular garden.
So, the perimeter of the garden = 2(l+b)=60
![\Rightarrow l+b=60/2=30](https://img.qammunity.org/2021/formulas/mathematics/high-school/mdaxjxfz5oeool9hf6fq973gih6gv1k83s.png)
![\Rightarrow l=30-b\cdots(i)](https://img.qammunity.org/2021/formulas/mathematics/high-school/qq0jmfd5esa29e7bd073ivx5xq1tl3kld0.png)
The area of the rectangular garden
![= l* b=200](https://img.qammunity.org/2021/formulas/mathematics/high-school/u5u5z27ndmtm3x7ja6rxzcpcvnh5kr2xn9.png)
[from equation (i)]
![\Rightarrow 30b-b^2=200](https://img.qammunity.org/2021/formulas/mathematics/high-school/dete980a0tocz3i2xtuac7ma9lljiql8l2.png)
![\Rightarrow b^2-30b+200=0](https://img.qammunity.org/2021/formulas/mathematics/high-school/fzf081zp8ytq45uuuto0myazqikt7h9lhu.png)
![\Rightarrow b^2-10b-20b+200=0](https://img.qammunity.org/2021/formulas/mathematics/high-school/2lyqj0ci9ckyf2a4871vn4gqts5e2uapau.png)
![\Rightarrow b(b-10)-20(b-10)=0](https://img.qammunity.org/2021/formulas/mathematics/high-school/wcxa0pzm42ohy569hj9q4uwuortpn01eni.png)
![\Rightarrow (b-20)(b-10)=0](https://img.qammunity.org/2021/formulas/mathematics/high-school/m3yo5of6pd3sliw8kawyqfoqd4p7xjtjoj.png)
![\Rightarrow b-20=0 \;or\; b-10=0](https://img.qammunity.org/2021/formulas/mathematics/high-school/fzzw18jx91cybrpp1nidljk314gdagj7ho.png)
![\Rightarrow b= 20\;or\; 10](https://img.qammunity.org/2021/formulas/mathematics/high-school/42ubbignzauv5igwpukq9qiktsz1b4tac6.png)
Now, from equation (i),
If b=20 than l= 30-20=10
or if b=10 than l=30-10=20.
Hence, the length and width of the rectangular garden are 20 feet and 10 feet.