128k views
4 votes
he triceps muscle in the back of the upper arm extends the forearm. This muscle in a professional boxer exerts a force of 2.00 103 N with an effective perpendicular lever arm of 2.80 cm, producing an angular acceleration of the forearm of 145 rad/s2. What is the moment of inertia of the boxer's forearm

User Bdrx
by
8.6k points

1 Answer

5 votes

Answer:

Moment of inertia = 0.3862kg-m²

Step-by-step explanation:

2.00x10³

2.80cm

145 rad

r = r⊥ x F

F is an applied force

r⊥ is the distance between the applied force and axis

Force exerted = 2.00x10³

r⊥ = 2.8cm = 0.028m

Alpha = 145rad/s²

r = 0.028m x 2.00x10³

r = 56.0N-m

To get the moment of inertia

56.0N-m² = (145rad/s²) x I

The I would be:

I = (56.0N-m²)/(145rad/s²)

I = 56/145

= 0.3862Kg-m²

This is the moment of inertia.

Thank you!

User Kamran Kausar
by
8.1k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.