Answer:
A)
![\left \{ {{80} \atop {20}} \} * \left \{ {{60} \atop {20}} \} * \left \{ {{40} \atop {20}} \} * \left \{ {{20} \atop {20}} \}](https://img.qammunity.org/2021/formulas/mathematics/college/xwtk04vsqvegmhothj1bpsenbn6eh2fzw8.png)
B)
![\left \{ {{20+4-1} \atop {4-1}} \} = \left \{ {{23} \atop {3}} \}](https://img.qammunity.org/2021/formulas/mathematics/college/e3zivco7sorqjl1u226wiq3dld05roljm1.png)
C)
=
![\left \{ {{17+4+1} \atop {4-1}} \} = \left \{ {{20} \atop {3}} \}](https://img.qammunity.org/2021/formulas/mathematics/college/xx66d0fciptioh9q37rxbwbl1zw4pu6d6g.png)
D)
=
![\left \{ {{20} \atop {3}} \} - \left \{ {{17} \atop {3}} \}](https://img.qammunity.org/2021/formulas/mathematics/college/7rlbati8fhot0z9zv83jxq2hqbee2up8i5.png)
Explanation:
A) How many ways can you put all Jellybeans in a row
Total number of Jellybeans = 80
The first jellybeans = 20 yellow , second is 20 orange jellybeans , third is 20 red jellybeans , fourth is 20 green jellybeans
Therefore the number of ways the Jellybeans can be put in a row is :
![\left \{ {{80} \atop {20}} \} * \left \{ {{60} \atop {20}} \} * \left \{ {{40} \atop {20}} \} * \left \{ {{20} \atop {20}} \}](https://img.qammunity.org/2021/formulas/mathematics/college/xwtk04vsqvegmhothj1bpsenbn6eh2fzw8.png)
B) How many ways are there to select a handful of 20 jellybeans
lets assume:
yellow jellybeans = a , orange jellybeans = b , red jellybeans = c , green jellybeans = d
a + b + c + d = 20
This is the number Non-negative integer solutions
=
![\left \{ {{20+4-1} \atop {4-1}} \} = \left \{ {{23} \atop {3}} \}](https://img.qammunity.org/2021/formulas/mathematics/college/e3zivco7sorqjl1u226wiq3dld05roljm1.png)
C) This is also the number of Non-negative integer solutions but in this case the value of C ≥ 3
hence the number of ways to select a handful of 20 jellybeans that contains at least 3 red
=
![\left \{ {{17+4+1} \atop {4-1}} \} = \left \{ {{20} \atop {3}} \}](https://img.qammunity.org/2021/formulas/mathematics/college/xx66d0fciptioh9q37rxbwbl1zw4pu6d6g.png)
D) In this case the value of C ≥ 3 and B ≤ 2
Hence the number of ways to select a handful of 20 jellybeans that contains at least 3 red and at most 2 orange
=
![\left \{ {{20} \atop {3}} \} - \left \{ {{17} \atop {3}} \}](https://img.qammunity.org/2021/formulas/mathematics/college/7rlbati8fhot0z9zv83jxq2hqbee2up8i5.png)