172k views
24 votes
Right triangles to find the exact length of:

T
30°
14 in
a) TI = in
60°
R

Right triangles to find the exact length of: T 30° 14 in a) TI = in 60° R-example-1
User Luwe
by
3.4k points

1 Answer

5 votes

Answer:

a) TI = 7√3 in

b) IR = 7 in

Step-by-step explanation:

Using cosine rule:


\sf cos(x) = (adjacent)/(hypotenuse)


\hookrightarrow \sf cos(30) = (TI)/(14)


\hookrightarrow \sf TI = 14cos(30)


\hookrightarrow \sf TI = 7√(3)

Using sine rule:


\sf sin(x) = (opposite)/(hypotenuse)


\hookrightarrow \sf sin(30) = (IR)/(14)


\hookrightarrow \sf IR = 14sin(30)


\hookrightarrow \sf IR = 7

User MattoTodd
by
3.0k points