Answer:
The area is changing at the point of
![\mathbf{61200 m^2/year}](https://img.qammunity.org/2021/formulas/mathematics/college/vfhw2gh0xl0eoe5rdeq14tvmuspux9g13n.png)
Explanation:
From the given information:
Let's recall from our previous knowledge that the formula for finding the area of a rectangle = L × w
where;
L = length and w = width of the rectangle
Suppose the Length L is twice the width w
Then L = 2w --- (1)
From The area of a rectangle
A = L × w
A = 2w × w
A = 2w²
Taking the above differentiating with respect to time
![(dA)/(dt )= 4w * (dw)/(dt) --- (2)](https://img.qammunity.org/2021/formulas/mathematics/college/kitqi3kxvetdidenximkwrgb4vvmmrvz2m.png)
At the time t
![(dw)/(dt)= 34 m \ per \ year ; w = 450 \ m](https://img.qammunity.org/2021/formulas/mathematics/college/sbwpwrhd7gc7377iqmf8lkcpjw613p0a6n.png)
Replacing the values back into equation 2, we get:
![(dA)/(dt )= 4 * 450 * 34](https://img.qammunity.org/2021/formulas/mathematics/college/57pd6xni2mhzl1b56r301mbcdqo5lz45mm.png)
![\mathbf{(dA)/(dt )= 61200 m^2/year}](https://img.qammunity.org/2021/formulas/mathematics/college/fiijmrdtz5eeb3kfinat3iylukllspi00e.png)