Answer:
The Margin of Error E
4.1 %
Explanation:
Given that:
The sample size = 579
The sample proportion
= 0.55
From the confidence interval of 95%
The level of significance ∝ = 1 - C.I = 1 - 0.95 = 0.05
The critical value of
![Z_(\alpha/2 ) = Z_(0.025) = 1.96](https://img.qammunity.org/2021/formulas/mathematics/high-school/t2a4gjosjkhhnxtqyia3pz9r2011jgk9df.png)
Thus;
The Margin of Error E =
![Z_(\alpha/2 ) * \sqrt{{\frac {\hat p ( 1 - \hat p }{n}}](https://img.qammunity.org/2021/formulas/mathematics/college/gg81oina2wadq3grniectp1bzkj9f1omtt.png)
The Margin of Error E =
![1.96 * \sqrt{{\frac {0.55 ( 1 - 0.55) }{579}}](https://img.qammunity.org/2021/formulas/mathematics/college/ikjge2pvndxckcfyer681nyqbu1d5qzvnx.png)
The Margin of Error E =
![1.96 * \sqrt{{\frac {0.55 ( 0.45 )}{579}}](https://img.qammunity.org/2021/formulas/mathematics/college/l5wowgi1uq8ti4loseywa2e69pho1v8v4c.png)
The Margin of Error E =
![1.96 * \sqrt{{\frac {0.2475}{579}}](https://img.qammunity.org/2021/formulas/mathematics/college/uu70a768d3uc3eomzl5yha67x27raq3gcg.png)
The Margin of Error E =
![1.96 * \sqrt{{4.2746114 * 10^(-4)}](https://img.qammunity.org/2021/formulas/mathematics/college/q5drtmvsfpfsjqim759h8wd8r7ggj0lufz.png)
The Margin of Error E =
![1.96 * .020675](https://img.qammunity.org/2021/formulas/mathematics/college/7r0t7kfxrc4y66vfbz9xgdahwicz7lo59a.png)
The Margin of Error E = 0.040523
The Margin of Error E
0.041
The Margin of Error E
4.1%