Answer:
![(665)/(1496)](https://img.qammunity.org/2021/formulas/mathematics/college/bppl9se0l8r0kpuswh8azikwmkxnns1ovr.png)
Explanation:
Given : In a group , there are 20 boys and 14 girls.
Total people = 20+14=34
Number of ways to choose 3 people out of 34 =
![^(34)C_3](https://img.qammunity.org/2021/formulas/mathematics/college/z52z0dxmbtqs2c4ke5xqqgbobxkchn7vh3.png)
Number of ways to choose 1 girl and 2 boys =
![^(14)C_1*^(20)C_2](https://img.qammunity.org/2021/formulas/mathematics/college/v7huk6m9in76ypx5dsglym2utj9qxj7oj9.png)
The probability that 1 girl and 2 boys are selected =
![(^(14)C_1* ^(20)C_2)/(^(34)C_3)](https://img.qammunity.org/2021/formulas/mathematics/college/q1m5h02m19qa6vkpl0zav8nmz0jk9d8zg2.png)
![(14*(20!)/(2!18!))/((34!)/(3!31!))\ \ \ [^nC_r=(n!)/(r!(n-r)!)]\\\\=(14*(20*19)/(2))/((34*33*32*31!)/(3*2\tims3!))\\\\=(665)/(1496)](https://img.qammunity.org/2021/formulas/mathematics/college/ai690epufwd16lqbw95e9bq1zvrkg7wyw1.png)
Hence, required probability =
![(665)/(1496)](https://img.qammunity.org/2021/formulas/mathematics/college/bppl9se0l8r0kpuswh8azikwmkxnns1ovr.png)