Answer:
d(P,Q) = 5.83 units
Mid-point = (23.5,25.5)
Explanation:
Given points are:
P(21,24) = (x1,y1)
Q(26,27) = (x2,y2)
The distance formula is given by:
![d = √((x_2-x_1)^2+(y_2-y_1)^2)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/dqbsqwgrrgc21cw3vr7fydj59bcru5qpz8.png)
Here (x1,y1) are the coordinates of first point and (x2,y2) are coordinates of second point.
Putting the given values in the formula
![d(P,Q) = √((26-21)^2+(27-24)^2)\\= √((5)^2+(3)^2)\\=√(25+9)\\=√(34)](https://img.qammunity.org/2021/formulas/mathematics/college/bwt5c33jz0ud9vgpkrb04mgs31ljz6la6f.png)
![= 5.830952](https://img.qammunity.org/2021/formulas/mathematics/college/wno0h4xut9dovz36d33muevgp6g01hk7ja.png)
Rounding off: 5.83 units
The mid-point of two points is given by the formula:
![M = ((x_1+x_2)/(2) , (y_1+y_2)/(2))](https://img.qammunity.org/2021/formulas/mathematics/college/cxsic1muo0smtoit434r9b3d7wx462dixs.png)
Putting the values:
![M = ((21+26)/(2) , (24+27)/(2))\\=((47)/(2) , (51)/(2))\\=(23.5, 25.5)](https://img.qammunity.org/2021/formulas/mathematics/college/ymhyi4bc45l6bcu1zgdiha5xs6ccf2os29.png)
Hence,
d(P,Q) = 5.83 units
Mid-point = (23.5,25.5)