Answer:
The required integers are x=3 and y= -9
Explanation:
Let one the integers be x and y
An integer is 15 more than 2 times another: x=15+2y
product of the two integers is -27: x*y=27
![x=15+2y ---eq(1)\\x*y=-27----eq(2)](https://img.qammunity.org/2021/formulas/mathematics/college/pb3dcbsstk6ravhtztkijemfzh78colwxf.png)
Solving both equations to find values of x and y
Putting value of x from equation 1 in equation 2
![(15+2y)*y=-27\\15y+2y^2=-27\\Rearranging:\\2y^2+15y-27=0](https://img.qammunity.org/2021/formulas/mathematics/college/u8ztp01tcxw4m356zt9li5bcbyk4z0ytfz.png)
This can be solved using quadratic formula:
![$y=(-b\pm√(b^2-4ac))/(2a)$](https://img.qammunity.org/2021/formulas/mathematics/college/9ys6rq4vk8mep6t2pd09oem7qpwvwjni2d.png)
Putting values and finding factors
![$y=(-(15)\pm√((15)^2-4(2)(-27)))/(2(2))$\\$y=(-(15)\pm√(225+216))/(4)$\\$y=(-(15)\pm√(441))/(4)$\\$y=(-(15)\pm21)/(4)$\\$y=(-(15)+21)/(4) \ or \ y=(-(15)-21)/(4)$\\$y=(6)/(4) \ or \ y=(-36)/(4)$\\$y=(3)/(2) \ or \ y=-9$](https://img.qammunity.org/2021/formulas/mathematics/college/6d9kjrwh2yc6vjol95h3vczwz5dtp9co25.png)
Since y is integer so, we consider only y= -9
The value of x will be:
![x*y=-27\\x*(-9)=-27\\x=(-27)/(-9) \\x=3](https://img.qammunity.org/2021/formulas/mathematics/college/lcov7tzq3v9038xf4gr28hd9e868hlm3xv.png)
So, the value of x is x=3
The required integers are x=3 and y= -9