Answer:
- m∠A = 60°, m∠B = 80°, m∠C = 40°
Explanation:
Since BD = DC, the triangle BDC is isosceles, so
Having m∠BDC = 100°, we can find m∠C
- m∠C = 1/2(180° - 100°) = 1/2(80°) = 40°
Finding angle B
- m∠B = m∠1 + m∠2 = 2*m∠2= 2*40° = 80°
Finding angle A
- m∠BDA = 180° - m∠BDC = 180° - 100° = 80°
- m∠A = 180° - (m∠1 + m∠BDA) = 180° - (40° + 80°) = 180° - 120° = 60°