89.2k views
0 votes
4y - 9 - 6y = 2(y + 5) - 3 solve for y

1 Answer

4 votes

Answer:


\huge{ \boxed{ \bold{ \tt{y = - 4}}}}

Explanation:


\sf{4y - 9 - 6y = 2(y + 5) - 3}

Subtract like terms : 6y from 4y


\longrightarrow{ \sf{ - 2y - 9 = 2(y + 5) - 3}}

Distribute 2 through the parentheses


\longrightarrow{ \sf{ - 2y - 9 = 2 *y + 2 *5 \: - 3}}


\longrightarrow{ \sf{ - 2y - 9 = 2y + 10 - 3}}

Subtract 3 from 10


\longrightarrow{ \sf{ - 2y - 9 = 2y + 7}}

Move 2y to left hand side and change it's sign


\longrightarrow{ \sf{ - 2y - 2y - 9 = 7}}

Move 9 to right hand side and change it's sign


\longrightarrow{ \sf{ - 2y - 2y = 7 + 9}}

Combine like terms


\longrightarrow{ \sf{ - 4y =7 + 9}}

Add the numbers : 7 and 9


\longrightarrow{ \sf{ - 4y = 16}}

Divide both sides by -4


\longrightarrow{ \sf{ ( - 4y)/( - 4) = (16)/( - 4)}}

Remember : Dividing a positive integer by any negative integer gives a negative integer.


\longrightarrow{ \boxed{ \sf{y = - 4}}}

------------------------------------------------------------

Let's check whether the value of y is -4 or not.

Verification

L.H.S :
\sf{4y - 9 - 6y}

plug the value of y and simplify


\dashrightarrow{ \sf{4 * (- 4 )- 9 - 6 * (- 4)}}


\dashrightarrow{ \sf{ - 16 - 9 - ( - 24)}}


\dashrightarrow{ \sf{ - 16 - 9 + 24}}


\dashrightarrow{ \sf{ - 16 + 15}}


\dashrightarrow{ \sf{ - 1}}

R.H.S :
\sf{2(y + 5) - 3}

plug the value of y and simplify


\dashrightarrow{ \sf{2( - 4 + 5) - 3}}


\dashrightarrow{ \sf{2 *1 - 3}}


\dashrightarrow{ \sf{2 - 3 }}


\dashrightarrow{ \sf{ - 1}}

∴ L.H.S = R.H.S

The value of y is -4

And we're done!

------------------------------------------------------------

Rules for solving an equation

  • If any equation contains fractions , multiply each term by the LCM of denominators.
  • Remove the brackets , if any.
  • Collect the terms with the variable to left hand side and constant terms to the right side by changing their signs ' + ' into ' - ' and ' - ' into ' + '.
  • Simplify and get the single term on each side.
  • Divide each side by the coefficient of variable and then get the value of variable.

Hope I helped!

Best regards! :D

~TheAnimeGirl

User Selecsosi
by
3.8k points