By inspecting the integrand, the "obvious" choice for substitution would be
u = y + x
v = y - x
Solving for x and y, we would have
x = (u - v)/2
y = (u + v)/2
in which case the Jacobian and its determinant are
![J=\begin{bmatrix}x_u&x_v\\y_u&y_v\end{bmatrix}=\frac12\begin{bmatrix}1&-1\\1&1\end{bmatrix}\implies|\det J|=\left|\frac12\right|=\frac12](https://img.qammunity.org/2021/formulas/mathematics/college/8bt2r8ef0yah4i5poj7xftl72r59neevdw.png)
The trapezoid R has two of its edges on the lines x + y = 8 and x + y = 9, so right away, we have 8 ≤ u ≤ 9.
Then for v, we observe that when x = 0 (the lowest edge of R), v = y ; similarly, when y = 0 (the leftmost edge of R), v = -x. So
-x ≤ v ≤ y
-(u - v)/2 ≤ v ≤ (u + v)/2
-u + v ≤ 2v ≤ u + v
-u ≤ v ≤ u
So, the integral becomes
![\displaystyle\iint_R5\cos\left(7(y-x)/(y+x)\right)\,\mathrm dA=\int_8^9\int_(-u)^u\frac52\cos\left(\frac{7v}u\right)\,\mathrm dv\,\mathrm du](https://img.qammunity.org/2021/formulas/mathematics/college/ejtdvvihh280b3k4jqloya9k9nagbcbg8d.png)
![=\displaystyle\frac52\int_8^9\frac u7(\sin7-\sin(-7))\,\mathrm du](https://img.qammunity.org/2021/formulas/mathematics/college/jz76du3wvy789h1lefvbr6ywe3fvkj5usw.png)
![=\displaystyle\frac57\sin7\int_8^9u\,\mathrm du](https://img.qammunity.org/2021/formulas/mathematics/college/uzs4iar6th3lj7bnvsbojd7albxxofc2x3.png)
![=\displaystyle\frac5{14}\sin7(9^2-8^2)=\boxed{(85)/(14)\sin7}](https://img.qammunity.org/2021/formulas/mathematics/college/m3e96z8trpocz4v3c7h5etizgt1t2dp2fg.png)