103k views
8 votes
Given lim x→0 f(x)=4. what is lim x→0 1/4 [f(x)]^4?

2 Answers

9 votes

Let's see


\\ \rm\Rrightarrow \lim_(x\to 0)(1)/(4)f(x)^4


\\ \rm\Rrightarrow (1)/(4)\lim_(x\to 0)f(x)^4


\\ \rm\Rrightarrow (1)/(4)* 4^4


\\ \rm\Rrightarrow (256)/(4)


\\ \rm\Rrightarrow 64

User Michael Pittino
by
3.8k points
2 votes

Given that


\displaystyle \lim_(x\to0) f(x) = 4

we can use the properties of limits to show


\displaystyle \lim_(x\to0) \frac14 f(x)^4 = \frac14 \lim_(x\to0) f(x)^4 = \frac14 \left(\lim_(x\to0) f(x)\right)^4 = \frac14 * 4^4 = 4^3 = \boxed{64}