Answer:
![g_2=(7)/(8)g](https://img.qammunity.org/2021/formulas/physics/college/u51f4e93dd988iih7kitvznumjtljj1e7v.png)
Step-by-step explanation:
G = Gravitational constant
M = Mass of planet
R = Radius of planet
Acceleration due to gravity on first planet
![g=(GM)/(R)](https://img.qammunity.org/2021/formulas/physics/college/4p039a53l4l54wzfozz3w3p0yyaqsko1uj.png)
Assuming that the planets have the same mass density
![\rho](https://img.qammunity.org/2021/formulas/physics/college/uz9980av7qla2dv8yejj9j15nd6teryunc.png)
Density of first planet
![\rho=(M)/(V)\\\Rightarrow \rho=(M)/((4)/(3)\pi R^3)\\\Rightarrow M=\rho (4)/(3)\pi R^3](https://img.qammunity.org/2021/formulas/physics/college/lxfiihjwj8kxqy4geyu9jqmm570hrvdf0o.png)
Density of second planet
![\rho=(M_2)/(V_2)=(M_2)/((4)/(3)\pi R^3-(4)/(3)\pi (0.5R)^3)\\\Rightarrow \rho=(M_2)/((4)/(3)\pi R^3(1-(1)/(2^3)))\\\Rightarrow \rho=(M_2)/((4)/(3)\pi R^3(1-(1)/(8)))\\\Rightarrow \rho=(M_2)/((4)/(3)\pi R^3((7)/(8)))\\\Rightarrow M_2=\rho(4)/(3)\pi R^3((7)/(8))\\\Rightarrow M_2=M(7)/(8)](https://img.qammunity.org/2021/formulas/physics/college/8fmgc1u7p9pws52a5eds7spn6re7a4s3gc.png)
Acceleration due to gravity on the second planet
![g_2=(GM_2)/(R)\\\Rightarrow g_2=(GM(7)/(8))/(R)\\\Rightarrow g_2=(7)/(8)g](https://img.qammunity.org/2021/formulas/physics/college/ev8siu4fnflqf8x0hpebrguj118nv4dvgb.png)
The acceleration due to gravity of the planet would be
times the acceleration due to gravity on the first planet.