184k views
4 votes
A rectangular garden has an area of 360 square feet. the length of the garden is 9 feet longer than the width. find the dimensions of the garden in feet

User Derrik
by
5.8k points

1 Answer

6 votes


\huge\underline{\frak{ \: \: \: \: \: \: Solution : \: \: \: \: \: \: }} \\ \\


\frak {\pink{Let}}\begin{cases} \sf{\red{Breadth \: be \: x}}\\ \sf{\orange{The \: Length = x + 9}}\end{cases} \\


\bigstar \: \underline{\textsf{According to the given Question :} }\\ \\


:\implies \sf Area = Length * Breadth \\ \\ \\


:\implies \sf 360=(x + 9 ) x \\ \\ \\


:\implies \sf 360= {x}^(2) + 9x \\ \\ \\


:\implies \sf {x}^(2) + 9x - 360 = 0\\ \\ \\


:\implies \sf {x}^(2) + 24x - 15x - 360 = 0\\ \\ \\


:\implies \sf x(x + 24) - 15(x + 24) = 0\\ \\ \\


:\implies \sf (x + 24) \: (x - 15) = 0\\ \\ \\


:\implies \underline{ \boxed{ \sf x = - 24 \: or \: x = 15}}\\ \\ \\


\therefore\:\underline{\textsf{Ignoring the negative value, the Breadth of rectangular garden is \textbf{15 ft}}}. \\ \\ \\

_____________________...


\bigstar \: \underline{\textsf{Dimensions of rectangular garden :}} \\ \\


\bullet\:\:\textsf{The Breadth of rectangular garden = x = \textbf{15 ft.}} \\ \\


\bullet\:\:\textsf{The Length of rectangular garden = x + 9 = 15 + 9 = \textbf{24 ft.}} \\ \\

User Simon Frey
by
5.9k points