Answer:
the answer is below
Explanation:
The z score is used to calculate by how many standard deviations the raw score is above or below the mean. The z score is given as:
![z=(x-\mu)/(\sigma)\\\\\mu=mean,\sigma=standard\ deviation](https://img.qammunity.org/2021/formulas/mathematics/college/2quec4z5ktj4fky0ya5kjpdkndqb8mve6n.png)
1) For x = 3
![z=(x-\mu)/(\sigma)=(3-4)/(2)=-0.5](https://img.qammunity.org/2021/formulas/mathematics/college/e54fc2xkwoi3zo6hrcj9nmws9dx43runfb.png)
For x = 6
![z=(x-\mu)/(\sigma)=(6-4)/(2)=1](https://img.qammunity.org/2021/formulas/mathematics/college/8obnpphtr96h2gqny9lmoj17defhttz20c.png)
P(3 ≤ x ≤ 6) = P(-0.5 ≤ z ≤ 1) = P(z < 1) - P(z < -0.5) = 0.8413 - 0.3085 = 0.5328
2) For x = 50
![z=(x-\mu)/(\sigma)=(50-40)/(15)=0.67](https://img.qammunity.org/2021/formulas/mathematics/college/ulj8m6n6822fj31pk66inmguslt1mume8u.png)
For x = 70
![z=(x-\mu)/(\sigma)=(70-40)/(15)=2](https://img.qammunity.org/2021/formulas/mathematics/college/oapc1ukmsdaqs4739qsoeos3srezm9to3d.png)
P(50 ≤ x ≤ 70) = P(0.67 ≤ z ≤ 2) = P(z < 2) - P(z < 0.67) = 0.9772 - 0.7486 = 0.2286
3) For x = 8
![z=(x-\mu)/(\sigma)=(8-15)/(3.2)=-2.19](https://img.qammunity.org/2021/formulas/mathematics/college/371aja2xieba0nbg2ex5qltbv6frgs817i.png)
For x = 12
![z=(x-\mu)/(\sigma)=(12-15)/(3.2)=-0.94](https://img.qammunity.org/2021/formulas/mathematics/college/ce3ypebchmzek54y3btr5m6r7b53a2d0x4.png)
P(8 ≤ x ≤ 12) = P(-2.19 ≤ z ≤ -0.94) = P(z < -0.94) - P(z < -2.19) = 0.1736 - 0.0143 = 0.1593
4) For x = 30
![z=(x-\mu)/(\sigma)=(30-20)/(3.4)=2.94](https://img.qammunity.org/2021/formulas/mathematics/college/xdru0h3yq8qflj9cxx2cvotn5v6h5e86q3.png)
P(x ≥ 30) = P(z ≥ 2.94) = 1 - P(z < 2.94) = 1 - 0.9984 = 0.0016
5) x = 90
![z=(x-\mu)/(\sigma)=(90-100)/(15)=-0.67](https://img.qammunity.org/2021/formulas/mathematics/college/f2i9ri6a788gb0re3s4f911r0ju3xdqf2e.png)
P(x ≥ 90) = P(z ≥ -0.67) = 1 - P(z < -0.67) = 1 - 0.2514 = 0.7486
6) For x = 10
![z=(x-\mu)/(\sigma)=(10-15)/(4)=-1.25](https://img.qammunity.org/2021/formulas/mathematics/college/on51971jo2j5p6u1j483lqpm1dbiypz5yd.png)
For x = 20
![z=(x-\mu)/(\sigma)=(20-15)/(4)=1.25](https://img.qammunity.org/2021/formulas/mathematics/college/ml4ptooshvz47tabc1x2ac3kv9bwx1xklw.png)
P(10 ≤ x ≤ 20) = P(-1.25 ≤ z ≤ 1.25) = P(z < 1.25) - P(z < -1.25) = 0.8944 - 0.1056 = 0.7888
7) For x = 7
![z=(x-\mu)/(\sigma)=(7-5)/(1.2)=1.67](https://img.qammunity.org/2021/formulas/mathematics/college/9314y87fkxxm3b9dd0cjjzl9cxjot1a1gt.png)
For x = 9
![z=(x-\mu)/(\sigma)=(9-5)/(1.2)=3.33](https://img.qammunity.org/2021/formulas/mathematics/college/hh0v2n787l2ya9kdx9w1s3ggrcb3tfnrvp.png)
P(7 ≤ x ≤ 9) = P(1.67 ≤ z ≤ 3.33) = P(z < 3.33) - P(z < 1.67) = 0.9996 - 0.9525 = 0.0471
8) For x = 40
![z=(x-\mu)/(\sigma)=(40-50)/(15)=-0.67](https://img.qammunity.org/2021/formulas/mathematics/college/ditdba6mwku5cmpnp49aq2l1mn8644et1u.png)
For x = 47
![z=(x-\mu)/(\sigma)=(47-50)/(15)=-0.2](https://img.qammunity.org/2021/formulas/mathematics/college/pd0d69v64xwkz8ft2e517biadkcbx61rbe.png)
P(40 ≤ x ≤ 47) = P(-0.67 ≤ z ≤ -0.2) = P(z < -0.2) - P(z < -0.67) = 0.4207 - 0.2514 = 0.1693
9) x = 120
![z=(x-\mu)/(\sigma)=(120-10)/(15)=7.33](https://img.qammunity.org/2021/formulas/mathematics/college/1gnqq074k6plpspw0kto626m792786k4fd.png)
P(x ≥ 120) = P(z ≥ 7.33) = 1 - P(z < 7.33) = 1 - 0.9999 = 0.001
10) x = 2
![z=(x-\mu)/(\sigma)=(2-3)/(0.25)=-4](https://img.qammunity.org/2021/formulas/mathematics/college/b4nz2h4lhl1q66kpy5cl6ln1ukczt6zvv1.png)
P(x ≥ 2) = P(z ≥ -4) = 1 - P(z < -4) = 1 - 0.0001 = 0.999