Answer: in the long run, 76.47% will have Cable TV
Explanation:
Given the data in the question;
the matrix of transition from having cable TV to not having cable TV is
P = [ 0.92 0.08
0.26 0.74 ]
Now if [ 0.564 0.436 ] is the distribution in 1990,
then in 1995 we have;
[ 0.564 0.436 ] [ 0.92 0.08 = [ 0.6322 0.3678 ]
0.26 0.74 ]
so 63.22% will have cable TV in 1995
[ 0.6322 0.3678 ] [ 0.92 0.08 = [ 0.6773 0.3227 ]
0.26 0.74 ]
also 67.73% will have cable TV in 2000
let V = [ V1 V2 ] be the long run vector then
V1 + V2 = 1 ------lets say equ1 and VP = V
⇒[ V1 V2 ] [ 0.92 0.08 = [V1 V2 ]
0.26 0.74 ]
⇒0.92V1 + 0.26V2 = V1
0.08V1 + 0.74V2 = V2
OR 0.26V2 = 0.08V1
from equ 1, V1 = (1 - V2)
SO
0.26V2 = 0.08 (1 - V2)
0.26V2 = 0.08 - 0.08V2
0.34V2 = 0.08
V2 = 0.08 / 0.34
V2 = 0.2353
THUS
0.26V2 = 0.08V1
0.26(0.2353) = 0.08V1
0.061178 = 0.08V1
V1 = 0.061178 / 0.08
V1 = 0.7647
Therefore in the long run, 76.47% will have Cable TV