Answer:
![d = 15h](https://img.qammunity.org/2021/formulas/mathematics/high-school/9z2ijjkfiokj9eu1b8dzl4a8zl3001ye6l.png)
Explanation:
Given
![Charges\ \alpha\ Time](https://img.qammunity.org/2021/formulas/mathematics/high-school/yqmvkncudjghg2xlprrrfverq9rkfvtp6s.png)
Represent charges with d and time with h
So:
when
![t = 2.50\ hours](https://img.qammunity.org/2021/formulas/mathematics/high-school/1jl945hf8uvffh3z9hnfbvriiyjlogvw52.png)
Required
Determine the formula
![Charges\ \alpha\ Time](https://img.qammunity.org/2021/formulas/mathematics/high-school/yqmvkncudjghg2xlprrrfverq9rkfvtp6s.png)
In other words,
![d\ \alpha\ h](https://img.qammunity.org/2021/formulas/mathematics/high-school/3053b039zz5uz5b7zwjiicw1lfaluk3gh2.png)
Convert to an equation
![d = k * h](https://img.qammunity.org/2021/formulas/mathematics/high-school/pyx76n1gn5suzkjztch5p5euf4t1wnvkf7.png)
Where
k = constant of proportion
Substitute values for Charges and Time
![37.50 = k * 2.5](https://img.qammunity.org/2021/formulas/mathematics/high-school/tqz5sflf8c1u42cxdmmn6worjzkqv3bghb.png)
Solve for k
![k = 37.50/2.50](https://img.qammunity.org/2021/formulas/mathematics/high-school/77nufs34nq5ljfrcxerlktrrqj9uju710f.png)
![k = 15](https://img.qammunity.org/2021/formulas/mathematics/high-school/kd9xbts60bl60swohljsyn8hb3w86relab.png)
Substitute 15 for k in
![d = k * h](https://img.qammunity.org/2021/formulas/mathematics/high-school/pyx76n1gn5suzkjztch5p5euf4t1wnvkf7.png)
![d = 15 * h](https://img.qammunity.org/2021/formulas/mathematics/high-school/aqvp8fjti6dbecffdvzibdtqdjdqinqo7o.png)
![d = 15h](https://img.qammunity.org/2021/formulas/mathematics/high-school/9z2ijjkfiokj9eu1b8dzl4a8zl3001ye6l.png)
The above formula models the situation