For the quadratic function y = x^2 + 7x - 9, the missing y-values in the table are: -19, -15, -1, -9, -1, 9, corresponding to the x-values -2, -1, 1, 0, 1, 2. Thus, the correct option is B.
To find the missing y-values for the given quadratic function
, you can substitute each x-value into the function and calculate the corresponding y-value.
Let's substitute each x-value into the function:
y(-2) = (-2)^2 + 7(-2) - 9 = 4 - 14 - 9 = -19
y(-1) = (-1)^2 + 7(-1) - 9 = 1 - 7 - 9 = -15
y(1) = (1)^2 + 7(1) - 9 = 1 + 7 - 9 = -1
y(0) = (0)^2 + 7(0) - 9 = 0 - 0 - 9 = -9
y(1) = (1)^2 + 7(1) - 9 = 1 + 7 - 9 = -1
y(2) = (2)^2 + 7(2) - 9 = 4 + 14 - 9 = 9
So, the complete table is:
x : -2, -1, 1, 0, 1, 2
y : -19, -15, -1, -9, -1, 9
Therefore, the correct option is:
**B) -19, -15, -9, -1, -9**