58.8k views
10 votes
If f(x) = 6x³ + 5x, g(x) = 3x² +5, and h(x) = 9x² - 8, What is the degree of f(g(h(x)))?

a)2
b)3
c)7
d) 12

2 Answers

3 votes
  • f(x)=6x³+5x
  • g(x)=3x²+5
  • h(x)=9x²-8

Degree of f(x)=3

Degree of g(x)=2

Degree of h(x)=2

Degree of f(g(h(x)))

  • 3(2)(2)
  • 12

Option D

User Alex Willrock
by
5.4k points
6 votes

Answer:

d) 12

Explanation:

Given functions:


f(x)=6x^3+5x


g(x)=3x^2+5


h(x)=9x^2-8

As we are only interested in the degrees of the function, we can eliminate the coefficients of each variable and the constants:


  • f(x)=x^3+x

  • g(x)=x^2

  • h(x)=x^2

Therefore:


\begin{aligned}g[h(x)]& =(x^2)^2\\& =x^4\end{aligned}


\begin{aligned}f[g[h(x)]] & = (x^4)^3+x^4\\& = x^(12)+x^4\end{aligned}

Therefore, the degree of f[g[h(x)]] is 12

User DiligentKarma
by
5.2k points