168k views
23 votes
Find all solutions to the problem: 2/x+6 - 1/x+3 =2


1 Answer

10 votes

Answer:


\displaystyle x=-(9)/(2),\:x=-4

Explanation:


\displaystyle (2)/(x+6)-(1)/(x+3)=2\\\\(2(x+3))/((x+6)(x+3))-((x+6))/((x+6)(x+3))=2\\ \\((2x+6)-(x+6))/((x+6)(x+3))=2\\ \\(x)/((x+6)(x+3))=2\\ \\x=2(x+6)(x+3)\\\\x=2(x^2+9x+18)\\\\x=2x^2+18x+36\\\\0=2x^2+17x+36


\displaystyle x=(-b\pm√(b^2-4ac))/(2a)\\\\x=(-17\pm√((17)^2-4(2)(36)))/(2(2))\\\\x=(-17\pm√(289-288))/(4)\\\\x=(-17\pm√(1))/(4)\\\\x=(-17\pm1)/(4)\\ \\x_1=(-18)/(4)=-(9)/(2),\: x_2=(-16)/(4)=-4

User Kasra Rahjerdi
by
8.5k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories