115k views
20 votes
Solve the following system of equation using inverse matrix method.
5x + 2y=4
7x + 3y=5​

User Marcv
by
7.7k points

1 Answer

2 votes


5x+2y = 4~~~~~~~~~~...(i)\\\\7x +3y = 5~~~~~~~~~~...(ii)\\\\\text{Write in AX = B form.}\\\\~~~~~~\begin{bmatrix}5&2\\7&3 \end{bmatrix} \begin{bmatrix} x\\y \end{bmatrix} = \begin{bmatrix} 4\\5 \end{bmatrix}\\\\\\\implies \begin{bmatrix} x\\y \end{bmatrix} = \begin{bmatrix} 4\\5 \end{bmatrix}\begin{bmatrix}5&2\\7&3 \end{bmatrix}^(-1)\\\\\\


\\\implies \begin{bmatrix} x\\y \end{bmatrix} = \begin{bmatrix} 4\\5 \end{bmatrix}\cdot\frac{\begin{bmatrix} 3&-7\\-2&5\end{bmatrix}^(T)}{\begin{vmatrix}5&2\\ 7&3 \end{vmatrix}}\\\\\\\implies \begin{bmatrix} x\\y \end{bmatrix} = \begin{bmatrix} 4\\5 \end{bmatrix}\cdot\frac{\begin{bmatrix} 3&-2\\-7&5\end{bmatrix}}{5(3) -2(7)}\\\\\\


\\\implies \begin{bmatrix} x\\y \end{bmatrix} = \begin{bmatrix} 4\\5 \end{bmatrix}\cdot\begin{bmatrix} 3&-2\\-7&5\end{bmatrix}\\\\\\ \implies \begin{bmatrix} x\\y \end{bmatrix} = \begin{bmatrix}12-10\\-28+25 \end{bmatrix}\\\\\\ \implies \begin{bmatrix} x\\y \end{bmatrix} = \begin{bmatrix}2\\-3\end{bmatrix}\\\\\\\text{Hence,}~ (x,y) = (2,-3)

User Ross Studtman
by
8.3k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories