192k views
4 votes
The equation y = \large 1\frac{1}{2}x represents the number of cups of dried fruit, y, needed to make x pounds of granola. Determine whether each point would be on the graph of this proportional relationship. Choose true or false for each point

User Vgru
by
4.4k points

1 Answer

5 votes

Answer:


(1(1)/(2),1) - False


(4,6) - True


(18,12) -- False


(0,0) -- True


(2(1)/(2),3(3)/(4)) -- True

Explanation:

The points are


(1(1)/(2),1) ,
(4,6),
(18,12),
(0,0) and
(2(1)/(2),3(3)/(4)) ---- missing from the question

Given


y = 1(1)/(2)x

Required

Determine if each of the points would be on
y = 1(1)/(2)x

To do this, we simply substitute the value of x and of each point in
y = 1(1)/(2)x.

(a)
(1(1)/(2),1)

In this case;


x = 1(1)/(2) and
y = 1


y = 1(1)/(2)x becomes


y = 1(1)/(2) * 1(1)/(2)


y = (3)/(2) * (3)/(2)


y = (9)/(4)


y = 2(1)/(4)

The point
(1(1)/(2),1) won't be on the graph because the corresponding value of y for
x = 1(1)/(2) is
y = 2(1)/(4)

(b)
(4,6)

In this case;


x = 4


y = 6


y = 1(1)/(2)x becomes


y = 1(1)/(2) * 4


y = (3)/(2) * 4


y = (3* 4)/(2)


y = (12)/(2)


y = 6

The point
(4,6) would be on the graph because the corresponding value of y for
x = 4 is
y = 6

(c)
(18,12)

In this case:


x = 18;y = 12


y = 1(1)/(2)x becomes


y = 1(1)/(2) * 18


y = (3)/(2) * 18


y = (3* 18)/(2)


y = (54)/(2)


y = 27

The point
(18,12) wouldn't be on the graph because the corresponding value of y for
x = 18 is
y = 12

(d)
(0,0)

In this case;


x =0; y = 0


y = 1(1)/(2)x becomes


y = 1(1)/(2) * 0


y = 0

The point
(0,0) would be on the graph because the corresponding value of y for
x = 0 is
y = 0

(e)
(2(1)/(2),3(3)/(4))

In this case:


x = 2(1)/(2);
y = 3(3)/(4)


y = 1(1)/(2)x becomes


y = 1(1)/(2) * 2(1)/(2)


y = (3)/(2) * (5)/(2)


y = (15)/(4)


y = 3(3)/(4)

The point
(2(1)/(2),3(3)/(4)) would be on the graph because the corresponding value of y for
x = 2(1)/(2) is
y = 3(3)/(4)

User Allan Engelhardt
by
4.8k points