121k views
5 votes
If cosθ = x, then = ± √1+x/2.

A. sin θ/2
B. cos2θ
C. sin2θ
D. cos θ/2

1 Answer

1 vote

♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️


\cos( \alpha ) = x


{sin}^(2)( \alpha ) = 1 - {cos}^(2)(x)


{sin}^(2)( \alpha ) = 1 - ({x})^(2)


\sin( \alpha ) = ± \sqrt{1 - {x}^(2) }

♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️

Look :


\sin(2 \alpha ) = 2. \sin( \alpha ) . \cos( \alpha )


\sin(2 \alpha ) = 2 * ( ± \sqrt{1 - {x}^(2) })(x) \\


\sin(2 \alpha ) = ± \: 2 \: x \: \sqrt{1 - {x}^(2) }

________________________________


\cos(2 \alpha ) = {cos}^(2)(x) - {sin}^(2)(x)


\cos(2 \alpha ) = {x}^(2) - ({± \: \sqrt{1 - {x}^(2) } })^(2) \\


\cos(2 \alpha ) = {x}^(2) - |1 - {x}^(2) |

If | 1 - | 0 :


\cos(2 \alpha ) = {x}^(2) - (1 - {x}^(2))


\cos(2 \alpha ) = {x}^(2) - 1 + {x}^(2)


\cos(2 \alpha ) = 2 {x}^(2) - 1

If | 1 - | < 0 :


\cos(2 \alpha ) = {x}^(2) - ( - 1 )(1 - {x}^(2) ) \\


\cos(2 \alpha ) = {x}^(2) + 1 - {x}^(2)


\cos(2 \alpha ) = 1

_________________________________


{sin}^(2)( ( \alpha )/(2) ) = (1 - \cos( \alpha ) )/(2) \\


{sin}^(2)( ( \alpha )/(2) ) = (1 - x)/(2) \\


\sin( ( \alpha )/(2) ) = ± \sqrt{ (1 - x)/(2) } \\

_________________________________


{cos}^(2)( ( \alpha )/(2) ) = (1 + \cos( \alpha ) )/(2) \\


{cos}^(2)( ( \alpha )/(2) ) = (1 + x)/(2) \\


\cos( ( \alpha )/(2) ) = ± \sqrt{ (1 + x)/(2) } \\

♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️

Thus the correct answer is (( D )) .

♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️

User Edward Yu
by
5.2k points