♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️
![\cos( \alpha ) = x](https://img.qammunity.org/2021/formulas/mathematics/college/38u7gnrqitqyeiu8l70dz6upvlzzommpoe.png)
![{sin}^(2)( \alpha ) = 1 - {cos}^(2)(x)](https://img.qammunity.org/2021/formulas/mathematics/college/rtvmx55je91zilyo1bmhxl18bpym8pr9pa.png)
![{sin}^(2)( \alpha ) = 1 - ({x})^(2)](https://img.qammunity.org/2021/formulas/mathematics/college/ne8sho242b5mblf5c09x20jeuk69um8qe4.png)
![\sin( \alpha ) = ± \sqrt{1 - {x}^(2) }](https://img.qammunity.org/2021/formulas/mathematics/college/83rl57cgbywg9tt4wpng382pfefbmgcf53.png)
♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️
Look :
![\sin(2 \alpha ) = 2. \sin( \alpha ) . \cos( \alpha )](https://img.qammunity.org/2021/formulas/mathematics/college/mueq4funymzge8lqxskzk93rwr7ugimu6a.png)
![\sin(2 \alpha ) = 2 * ( ± \sqrt{1 - {x}^(2) })(x) \\](https://img.qammunity.org/2021/formulas/mathematics/college/zll6i7l72059mrgf26kg67m8xgd21cv2cd.png)
![\sin(2 \alpha ) = ± \: 2 \: x \: \sqrt{1 - {x}^(2) }](https://img.qammunity.org/2021/formulas/mathematics/college/co9cw1lnrdsgawttfkvyylp1i09dth7751.png)
________________________________
![\cos(2 \alpha ) = {cos}^(2)(x) - {sin}^(2)(x)](https://img.qammunity.org/2021/formulas/mathematics/college/xfyqo4sckavymrrwir6r9bwupne9lut7p1.png)
![\cos(2 \alpha ) = {x}^(2) - ({± \: \sqrt{1 - {x}^(2) } })^(2) \\](https://img.qammunity.org/2021/formulas/mathematics/college/qq7bedxp5nfbaqdof71eb2jtl82ul0o697.png)
![\cos(2 \alpha ) = {x}^(2) - |1 - {x}^(2) |](https://img.qammunity.org/2021/formulas/mathematics/college/q3f8hzg9ki2cw717ec0laaok89sa29c1wa.png)
If | 1 - x² | ≥ 0 :
![\cos(2 \alpha ) = {x}^(2) - (1 - {x}^(2))](https://img.qammunity.org/2021/formulas/mathematics/college/g4eboap384k4zslevs7jjs8rxd33ww13st.png)
![\cos(2 \alpha ) = {x}^(2) - 1 + {x}^(2)](https://img.qammunity.org/2021/formulas/mathematics/college/et5nt86azohvjz3e1tekesrk6urc8ndntf.png)
![\cos(2 \alpha ) = 2 {x}^(2) - 1](https://img.qammunity.org/2021/formulas/mathematics/college/hc8xhbrjk16nep50zujd82q5ojicxfj21s.png)
If | 1 - x² | < 0 :
![\cos(2 \alpha ) = {x}^(2) - ( - 1 )(1 - {x}^(2) ) \\](https://img.qammunity.org/2021/formulas/mathematics/college/js2jmr6j147ihzhvp5hvavdgqqtf2dalr1.png)
![\cos(2 \alpha ) = {x}^(2) + 1 - {x}^(2)](https://img.qammunity.org/2021/formulas/mathematics/college/qbfp0kn4d8jvh79cw0ghiwid6id4gl8hw4.png)
![\cos(2 \alpha ) = 1](https://img.qammunity.org/2021/formulas/mathematics/college/17r2empkgt4hvz1bworce5q27q31gqt0ee.png)
_________________________________
![{sin}^(2)( ( \alpha )/(2) ) = (1 - \cos( \alpha ) )/(2) \\](https://img.qammunity.org/2021/formulas/mathematics/college/jldtjzvjvunlk9cmo4mu2uop58hu70lydm.png)
![{sin}^(2)( ( \alpha )/(2) ) = (1 - x)/(2) \\](https://img.qammunity.org/2021/formulas/mathematics/college/jw1b2nqkxgk8ots8dn0cmd4vlnsjot2br0.png)
![\sin( ( \alpha )/(2) ) = ± \sqrt{ (1 - x)/(2) } \\](https://img.qammunity.org/2021/formulas/mathematics/college/vzso78ec7fs8kilqcffvvydkmkxc9nlfpv.png)
_________________________________
![{cos}^(2)( ( \alpha )/(2) ) = (1 + \cos( \alpha ) )/(2) \\](https://img.qammunity.org/2021/formulas/mathematics/college/j13l5tq6m5il3fvh1dvprnytkbobj2oe9y.png)
![{cos}^(2)( ( \alpha )/(2) ) = (1 + x)/(2) \\](https://img.qammunity.org/2021/formulas/mathematics/college/que1tka8zrg86hvuuk1n6syvxsvyohho2a.png)
![\cos( ( \alpha )/(2) ) = ± \sqrt{ (1 + x)/(2) } \\](https://img.qammunity.org/2021/formulas/mathematics/college/yn9zxmb67r8u7550rvwzjjldq4cmd06js9.png)
♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️
Thus the correct answer is (( D )) .
♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️