170k views
1 vote
Find tan2θ if θ terminates in Quadrant IV and cosθ = 3/5.

A. -1/2
B. 1/2
C. 24/7
D. -24/7

2 Answers

5 votes

♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️


\cos( \alpha ) = (3)/(5) \\


{sin}^(2)( \alpha ) = 1 - {cos}^(2) ( \alpha )


{sin}^(2)( \alpha ) = 1 - ({ (3)/(5) })^(2) \\


{sin}^(2)( \alpha ) = 1 - (9)/(25) \\


{sin}^(2)( \alpha ) = (25)/(25) - (9)/(25) \\


{sin}^(2)( \alpha ) = (16)/(25) \\


sin( \alpha )= ± \sqrt{ (16)/(25) } \\

In Quadrant IV , sin is negative .

Thus ;


sin( \alpha ) = - \sqrt{ (16)/(25) } \\


\sin( \alpha ) = - (4)/(5) \\

♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️


\tan(2 \alpha ) = ( \sin(2 \alpha ) )/( \cos(2 \alpha ) ) \\

♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️


\sin(2 \alpha ) = 2. \sin( \alpha ). \cos( \alpha )


\sin(2 \alpha ) = 2 * ( - (4)/(5) ) * ( (3)/(5) ) \\


\sin(2 \alpha ) = - (24)/(25) \\

♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️


\cos(2 \alpha ) = {cos}^(2)( \alpha ) - {sin}^(2)( \alpha )


\cos(2 \alpha ) = ({ (3)/(5) })^(2) - ({ - (4)/(5) })^(2) \\


\cos(2 \alpha ) = (9)/(25) - (16)/(25) \\


\cos(2 \alpha ) = - (7)/(25) \\

♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️


\tan(2 \alpha ) = ( \sin(2 \alpha ) )/( \cos(2 \alpha ) ) \\


\tan(2 \alpha ) = ( - (24)/(25) )/( - (7)/(25) ) \\


\tan(2 \alpha ) = - (24)/(25) / - (7)/(25) \\


\tan(2 \alpha ) = - (24)/(25) * - (25)/(7) \\


\tan(2 \alpha ) = (24)/(7) \\

Thus the correct answer is (( C )) .

♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️

User Windmaomao
by
4.3k points
2 votes

Answer:

we have

cos θ = 3/5.

sin²θ=1-cos²θ

sin²θ=1-9/25

sin²θ=16/25

sinθ=±4/5

since it lies in IV qyadrant so

sinθ=-4/5

we have

tan2θ=sin2θ/cos2θ=2sinθcosθ/[cos²θ-sin²θ)

=(2×-4/5×3/5)/(9/25-16/25)=24/7

User Tho Bui Ngoc
by
4.6k points