230k views
0 votes
Not sure how to do this

Not sure how to do this-example-1

2 Answers

4 votes
it should be this answer i got it off the internet it should be right
Not sure how to do this-example-1
User Mike Chirico
by
4.4k points
8 votes

Answer:


\underline{\boxed{\sf{2(x - 11)(x + 11)}}}

Explanation:


\sf{2x^2 - 242}

Common factor :


\sf{2x^2 - 242}


\sf{2(x^2 - 121)}


\: \: \: \: \: \: \: \: \: \: \: \:

Use the sum-product pattern :


\sf{2(x^2-121)}


\sf{2(x^2 + 11x-11x - 121)}


\: \: \: \: \: \: \: \: \: \: \: \:

Common factor from the two pairs :


\sf{2(x^2 + 11x-11x - 121)}


\sf{2(x(x+11) -11(x + 11))}


\: \: \: \: \: \: \: \: \: \: \: \:

Rewrite in factored form :


\sf{2(x(x+11)- 11(x + 11))}


\sf{2(x - 11)(x + 11)}


\: \: \: \: \: \: \: \: \: \: \: \:

Solution :


\sf{2(x - 11)(x + 11)}

User Imran Khan
by
4.3k points