Answer:
a) h_turbine is 19.033 m
b) W_turbine is 92981.48 J
Step-by-step explanation:
Given that;
inlet diameter of pipe d1 = 30cm = 0.3 m
outlet diameter of pipe d2 = 25cm = 0.25 m
flow rate through pipe Q = 0.6 m³/s
pressure drop Δp = 148 kPa = 148 × 10³ Pa
turbine generator efficiency y = 83%
a)
find h_turbine
now applying energy equation at inlet and outlet of pipe
p1/pg + V1²/2g + z1 = p2/pg + v2²/2g + z2 -------------let this be equ 1
now Q = A1V1
0.6 = π/4(0.3)²V1
V1 = 8.48 m/s
Q = A2V2
0.6 = π/4(0.25)²V2
v2 = 12.22 m/s
from the diagram consider outlet of pipe asdatum so; z1 = h, z2 = 0o
so we substitute our values into equation 1
p1/pg + v1²/2g + z1 = p2/pg + v2²/2g + z2
p1/pg + (8.48)²/(2×9.81) + h = p2/pg + (12.22)²/(2×9.81) + 0
h + 3.665 = p2/pg - p1/pg + 7.611
h = (p2-p1)/pg + 7.611 - 3.665
h = ( 148 × 10³ )/(10³×9.81) + 7.611 - 3.665
h = 15.0866 + 3.946
h = 19.0326 ≈ 19.033 m
therefore the h_turbine is 19.033 m
b)
now to find the work done in the turbine W_turbine
W_turbine = y × mgh
we know that mass flow rate m = pQ
so
W_turbine = y × pQgh
we substitute
W_turbine 0.83 × 10³ × 0.6 × 9.81 × 19.0326
W_turbine = 92981.48 J