Answer:
495 ways
Explanation:
Step one:
we will use the combination formula to solve for the number of ways
given
n= 12
r=4
the formula for the combination is
C(n,r)=(nr)=n!/(r!(n−r)!)=]
Step two:
substituting we have
C(12,4)=(nr)=12!/(4!(12−4)!)=
C(12,4)=(nr)=12!/(4!(8)!)=
C(12,4)=(nr)=12*11*10*9*8!/(4!(8)!)=
C(12,4)=(nr)=12*11*10*9/4!
C(12,4)=(nr)=12*11*10*9/4*3*2*1
C(12,4)=(nr)=11880/24
C(12,4)=(nr)=495ways
the number of ways is 495 ways