Answer:
![f(x)=2 \cos (2x)+5](https://img.qammunity.org/2023/formulas/mathematics/high-school/yrule6oto4p0q0strpjdbkfg1v1ba55100.png)
Explanation:
The cosine function is periodic, meaning it repeats forever.
Standard form of a cosine function:
f(x) = A cos(B(x + C)) + D
- A = amplitude (height from the mid-line to the peak)
- 2π/B = period (horizontal distance between consecutive peaks)
- C = phase shift (horizontal shift - positive is to the left)
- D = vertical shift
Given:
- Amplitude = 2 ⇒ A = 2
![\sf Period=\pi \implies (2 \pi)/(B)=\pi \implies B=2](https://img.qammunity.org/2023/formulas/mathematics/high-school/u4tn980g86ggrx1e0e649g6289gb0e5yks.png)
- mid-line = 5 ⇒ D = 5
Inputting the given values into the standard form:
![\implies f(x)=2 \cos (2x)+5](https://img.qammunity.org/2023/formulas/mathematics/high-school/122v16ork9fnfon4v4ak2mmwd52otx71y9.png)