78.0k views
4 votes
URGENT NEEDS ANSWERED WITHIN 20 MINUTES

Find the radius of a circle whose sector area is 59 square inches and whose arc measures 40o.

1 Answer

1 vote

Final answer:

To find the radius of the circle, we can use the formulas for the sector area and the circumference of a circle.

Step-by-step explanation:

To find the radius of a circle whose sector area is 59 square inches and whose arc measures 40o, we can use the formulas for the area of a sector and the circumference of a circle.

The formula for the area of a sector is A = (θ/360) × π × r², where A is the area, θ is the central angle, π is approximately 3.14, and r is the radius. Given that the sector area is 59 square inches and the arc measures 40 degrees, we can substitute these values into the formula.

59 = (40/360) × 3.14 × r²

Dividing both sides by (40/360) × 3.14, we get:

r² = 59 / ((40/360) × 3.14)

Taking the square root of both sides, we get:

r = √(59 / ((40/360) × 3.14))

Calculating this expression, we find that the radius of the circle is approximately 4.17 inches.

User Digit Plumber
by
6.6k points