107k views
3 votes
Approximate the sum of the convergent infinite series the least usingnumber of terms so that the error is less than .0001. What is the fewest number of terms needed and round your result to three decimal places and state maximum error.

User Maris
by
5.0k points

1 Answer

6 votes

Solution :


$\sum_(n=1 )^(\infty ) ((-1)^n)/(n ! 2^n)$
$a_n= ((-1)^n)/(n ! 2^n) \ \ \ \ \ a_(n+1)= ((-1)^(n+1))/((n+1) ! 2^(n+1))$

Error =
$|a_(n+1)|$

Error ≤ 0.0001


$|((-1)^(n+1))/((n+1)!2^(n+1))| \leq 0.0001$


$|(1)/((n+1)!2^(n+1))| \leq 10^(-4)$


$(n+1)! 2^(n+1) \geq 10000$

Now try, n ≥ 5


$\sum_(n=1 )^(\infty ) ((-1)^n)/(n ! 2^n)$ =
$\sum_(n=1 )^(5 ) ((-1)^n)/(n ! 2^n)$ (with error 0.0001)


$\sum_(n=1 )^(\infty ) ((-1)^n)/(n ! 2^n)$ =
$(-1)/(1!2)+(1)/(2!2^2)-(1)/(3! 2^3)+(1)/(4! 2^4)-(1)/(5! 2^5)$


$\sum_(n=1 )^(\infty ) ((-1)^n)/(n ! 2^n)$ = 0.6065104

User Baris Atamer
by
4.9k points