Answer:
1. Solving
we get x=3
2. Solving
we get x=-1
Explanation:
We need to solve the equations:
1.
![(1)/(3)(2x-1)-(1)/(4)(2x+1)=(1)/(12)(2-x)](https://img.qammunity.org/2021/formulas/mathematics/high-school/a4pgo3zie053hdm4235nncxavl0kzfx1fu.png)
Expanding the brackets
![(2x)/(3)-(1)/(3) -(2x)/(4)-(1)/(4) =(2)/(12)-(x)/(12) \\(2x)/(3)-(1)/(3) -(x)/(2)-(1)/(4) =(1)/(6)-(x)/(12)](https://img.qammunity.org/2021/formulas/mathematics/high-school/pxl2hmw2fb7jxx6jmq1w04tkbvyj3n2k6x.png)
Taking LCM on left side we get 12
![(2x*4-1*4-x*6-1*3)/(12)= (1)/(6)-(x)/(12)\\(8x-4-6x-3)/(12)= (1)/(6)-(x)/(12)\\(8x-6x-3-4)/(12)= (1)/(6)-(x)/(12)\\(2x-7)/(12)= (1)/(6)-(x)/(12)\\(2x)/(12)-(7)/(12)= (1)/(6)-(x)/(12)](https://img.qammunity.org/2021/formulas/mathematics/high-school/l37z9sh7ne6ryt96waa1f1yss6c6iq44c0.png)
Add 7/12 on both sides
![(2x)/(12)-(7)/(12)+(7)/(12) = (1)/(6)-(x)/(12)+(7)/(12)\\(x)/(6)=(1*2-x+7)/(12)\\ (x)/(6)=(-x+9)/(12) \\(x)/(6)=-(x)/(12) +(9)/(12)\\ (x)/(6)=-(x)/(12) +(3)/(4)](https://img.qammunity.org/2021/formulas/mathematics/high-school/fpdd14xz2wp9d2gt31b4by37trjvylj4b3.png)
Adding x/12 on both sides and simplifying
![(x)/(6)+(x)/(12) =-(x)/(12) +(3)/(4)+(x)/(12)\\(x*2+x)/(12)=(3)/(4)\\(3x)/(12)= (3)/(4)\\](https://img.qammunity.org/2021/formulas/mathematics/high-school/3nqf5kc4f2xdztvqpx9e0hbag9grmdxflg.png)
Multiply both sides by 12/3
![(3x)/(12)*(12)/(3)=(3)/(4)*(12)/(3) \\Simplifying:\\x=3](https://img.qammunity.org/2021/formulas/mathematics/high-school/1bf6dn42xgey4s9ibxuo42fjlbkze0gi8s.png)
So, solving
we get x=3
2.
![(x-2)/(4)+(2x-1)/(4)=x-(1)/(2)](https://img.qammunity.org/2021/formulas/mathematics/high-school/jqrzwz66h0casj5ew7cg6y8y2rczpxtios.png)
Taking LCM and solving:
![(x-2+2x-1)/(4)=(2x-1)/(2)\\(x+2x-1-2)/(4)=(2x-1)/(2)\\(3x-3)/(4)=(2x-1)/(2)\\](https://img.qammunity.org/2021/formulas/mathematics/high-school/15lc623qwoqsmty6i5aqej92ucj1cned59.png)
Cross multiplying
![2(3x-3)=4(2x-1)\\6x-6=8x-4\\Combining\ like\ terms \ :\\6x-8x=-4+6\\-2x=2\\x=-1](https://img.qammunity.org/2021/formulas/mathematics/high-school/n6hnt07ukk5e934gvtr5jnp0najidvezl9.png)
So, solving
we get x=-1