Answer:
![y=20√(1)](https://img.qammunity.org/2021/formulas/mathematics/college/k6su3qnddjunf7rjy65td14chnmbown4ah.png)
Explanation:
The construction of the figure gives us three right triangles, where we can apply Pythagora's Theorem.
I have added two variables to the image in the picture attached.
On the triangle with sides y,h,16 we have:
![y^2-16^2=h^2](https://img.qammunity.org/2021/formulas/mathematics/college/f1r8mxtntb3adwlw1zd1cqh6hi2oahlasi.png)
On the triangle with sides h,z,25 we have:
![z^2-25^2=h^2](https://img.qammunity.org/2021/formulas/mathematics/college/m97wq02n9lrtjesr6mf4t9pfg7tl5fjlng.png)
Equating
:
![y^2-16^2=z^2-25^2\qquad\qquad [1]](https://img.qammunity.org/2021/formulas/mathematics/college/tvyntgawmew7dzap08spkgcx9lznudcr49.png)
On the bigger triangle with sides y,z,16+25=41 we have:
![y^2+z^2=41^2](https://img.qammunity.org/2021/formulas/mathematics/college/a67l8vkgpr0vm9hkovzp0n3py1qivb5u31.png)
Adding this last equation with [1]:
![y^2-16^2+y^2+z^2=z^2-25^2+41^2](https://img.qammunity.org/2021/formulas/mathematics/college/z6j1ab9uyoq0bexbxi13od1s0t2qsve0za.png)
Simplifying:
![2y^2-16^2=41^2-25^2](https://img.qammunity.org/2021/formulas/mathematics/college/99pi9qk4apnxs5xgnhpvr29581fz5eze2m.png)
Operating:
![2y^2-256=1681-625](https://img.qammunity.org/2021/formulas/mathematics/college/rkss2l17uuerrexcti9u71zvxh6e8c5if3.png)
![2y^2=1056-256](https://img.qammunity.org/2021/formulas/mathematics/college/c93fsxsjr5ji6arqv6f12po94n57iemrsa.png)
![2y^2=800](https://img.qammunity.org/2021/formulas/mathematics/college/3sn1vvrojcb90zhx3d0lmom3ecp2ded6bl.png)
Dividing by 2:
![y^2=400](https://img.qammunity.org/2021/formulas/mathematics/college/q53c87dp582v02x9le7u8x3nycntrwrneo.png)
Taking square root:
y=20
To enter the number in the required format:
![\boxed{y=20√(1)}](https://img.qammunity.org/2021/formulas/mathematics/college/q2s1xutiuztdmj8m0c82b64fg1zn5k3rwj.png)