129k views
2 votes
MathPhys! Sqdancefan! Geniuses Please help!

The volume of a triangular prism is given by
12x^(5) -
27^(4) +
20x^(3) -
x^(2) -
127x^{} +
63 The height of the prism is given by
4x - 9.
Using long polynomial division, find an expression for the area of the base of the triangular prism.

User Anfuca
by
5.3k points

1 Answer

5 votes

Answer:


\boxed{A=3 {x}^(4) + {5x}^(2) + 11x - 7}

Explanation:


</p><p>if \: its \: volume \: is \to \: \\ 12x^(5)- 27x^(4) + 20x^(3) - x^(2) - 127x + 63 \\ given \: the \: height \: is \to \\ 4x - 9 \\ then \: the \:a rea \: is \: given \: by \to \\ A= (V)/(h) .............where \: \boxed{v} \: is \: the \: volume \\ A= (12x^(5)- 27x^(4) + 20x^(3) - x^(2) - 127x + 63 )/(4x - 9 ) \to\\ \\ 4x - 9 ) \frac{ \frac{3 {x}^(4) + {5x}^(2) + 11x - 7}{.....................................................} }{ \frac{12x^(5)- 27x^(4) + 20x^(3) - x^(2) - 127x + 63}{ \frac{ - (12x^(5)- 27x^(4)) }{ \frac{ \to \: 20x^(3) - x^(2) - 127x + 63}{ \frac{ -(20x^(3) - 45 {x}^(2) ) }{ \frac{ \to \: 44 {x}^(2) - 127x + 63}{ \frac{ - (44 {x}^(2) - 99x)}{ \frac{ \to \: - 28x + 63}{ \frac{ ( - ( - 28x + 63))/( \to \: 0) }{} } } } } } } } } \\ hence\: the \: area \: is \: given \: to \: be \to \\ \boxed{A=3 {x}^(4) + {5x}^(2) + 11x - 7}

♨Rage♨

User Damon Baker
by
4.7k points