Answer:
![\boxed {d = √(58)}](https://img.qammunity.org/2021/formulas/mathematics/high-school/l73rzzasdobfvx86x261a548o2jddpe29m.png)
Explanation:
Use the Distance Formula to help determine the distance between the two given points:
![d = \sqrt{(x_(2) - x_(1)) ^(2) + (y_(2) - y_(1))^(2)}](https://img.qammunity.org/2021/formulas/mathematics/high-school/mp48wj85kqxd3tgbwt4l8ojrqftw09huza.png)
First point:
![(x_(1), y_(1))](https://img.qammunity.org/2021/formulas/mathematics/middle-school/yp98gljy3zcpa4z9fbx6g7k38qnjkwaylx.png)
Second point:
![(x_(2), y_(2))](https://img.qammunity.org/2021/formulas/mathematics/middle-school/hbfd2agip7yp2hhzmoqgft0859iods5k2y.png)
-Apply the given points onto the formula:
First point:
![(-5, 1)](https://img.qammunity.org/2021/formulas/mathematics/high-school/84ui6j6eembmw1y5it7024mu2trpubrwrz.png)
Second point:
![(2, 4)](https://img.qammunity.org/2021/formulas/mathematics/high-school/3n4mxa3r2l4td8d4rxykbmyhqciwdx2ll0.png)
![d = \sqrt{(2 + 5) ^(2) + (4 - 1)^(2)}](https://img.qammunity.org/2021/formulas/mathematics/high-school/6e9g0ctccp1ibjcv31dw8aphwjizdrcqb9.png)
-Solve for the distance:
![d = \sqrt{(2 + 5) ^(2) + (4 - 1)^(2)}](https://img.qammunity.org/2021/formulas/mathematics/high-school/6e9g0ctccp1ibjcv31dw8aphwjizdrcqb9.png)
![d = \sqrt{(7) ^(2) + (3)^(2)}](https://img.qammunity.org/2021/formulas/mathematics/high-school/boe3mbdsq84c7hocghs0ldrn10r4bnj5s8.png)
![d = √(49 + 9)](https://img.qammunity.org/2021/formulas/mathematics/high-school/8wctmcajiavrso1tor6cmgi530fzxe0nn2.png)
(since the number can't be square rooted, it will stay written the same)
Therefore, the distance is
.