Answer:
The probability that waiting time until the next claim will exceed 4 more days i.e. P(X>6/X>2) = 0.3679
Explanation:
From the given information:
Let consider X to be a random variable that follows an exponential distribution fo the waiting time.
Then;
since the mean is distributed between 1 - 4 days
Thus:
![F_x(x) = \left \{ {{(1)/(4)e^(-x/4) \atop {0}} \right ; x > 0 \ or \ otherwise](https://img.qammunity.org/2021/formulas/mathematics/college/i665uez1xwc7woh5hh8yghuwn3rud32l6g.png)
The objective is to determine:
![P(X > 6/ X > 2) = (P(X >6 \cap X >2))/(P(X > 2))](https://img.qammunity.org/2021/formulas/mathematics/college/krr43ln62kuoh5olkvkx3h6w7xokgflow2.png)
![P(X > 6/ X > 2) = (P(X >6))/(P(X > 2))](https://img.qammunity.org/2021/formulas/mathematics/college/fbvwsg77r2433zp14m2p5hv1rw1xegj0w7.png)
Recall that:
![P(X>a)=\int ^(\infty)_(a)(1)/(4)e^(-x/4) \ dx](https://img.qammunity.org/2021/formulas/mathematics/college/i33hw7toc3iv7q0pp3dwn5rqfb04ke3a0g.png)
![P(X>a)= \big ( -e ^(-x/4) \big ) ^(\infty)_(a)](https://img.qammunity.org/2021/formulas/mathematics/college/w98soi3217x28q8cdfb99p6p1mhwtopufu.png)
![\implies P(X>6/X>2) = (e^(-6/4))/(e^(-2/4))](https://img.qammunity.org/2021/formulas/mathematics/college/8caetqrjjfyq3qbkri5cc1mtbuuto09m40.png)
![P(X>6/X>2) = {e^(-(6/4 - 2/4))}](https://img.qammunity.org/2021/formulas/mathematics/college/24zq2a11g7ypv2t4r7zz72nwso05q6v1rc.png)
![P(X>6/X>2) = {e^(-4/4)](https://img.qammunity.org/2021/formulas/mathematics/college/lh0gyghzu2jqd0uov8zhi95nu5u7p5kvm7.png)
![P(X>6/X>2) = {e^(-1)](https://img.qammunity.org/2021/formulas/mathematics/college/ztf3ri2vaqceiag3dzip0l2b8ns0zbmwzr.png)
= 0.3678794412
To four decimal places; we have:
The probability that waiting time until the next claim will exceed 4 more days i.e. P(X>6/X>2) = 0.3679