Answer:
![\mathbf{v_(max) = √(gL)}](https://img.qammunity.org/2021/formulas/physics/college/4u5kk7qg91ew7sza7rhlftaf5phv59ofyr.png)
Step-by-step explanation:
Considering an object that moving about in a circular path, the equation for such centripetal force can be computed as:
![\mathbf {F = (mv^2)/(2)}](https://img.qammunity.org/2021/formulas/physics/college/h0aifhc8sz8z32dvx235clpz3b6e8s8qab.png)
The model for the person can be seen in the diagram attached below.
So, along the horizontal axis, the net force that is exerted on the person is:
![mg cos \theta = (mv^2)/(L)](https://img.qammunity.org/2021/formulas/physics/college/l0x1ftwusm9z0ow05gkykoi1lvc7zzpcpd.png)
Dividing both sides by "m"; we have :
![g cos \theta = (v^2)/(L)](https://img.qammunity.org/2021/formulas/physics/college/adk7sh4jtzu182nwjgil8t9dsrqjkoyh7h.png)
Making "v" the subject of the formula: we have:
![v^2 = g Lcos \theta](https://img.qammunity.org/2021/formulas/physics/college/q4p6xpa5hqdxr8eh8ysxfo7t0imltzovvr.png)
![v=\sqrt{ gL cos \theta](https://img.qammunity.org/2021/formulas/physics/college/8hsc3ezmoausq59i8v0x0ssw04zvglov5g.png)
So, when
= 0; the velocity is maximum
∴
![v_(max) = √(gL \ cos \theta)](https://img.qammunity.org/2021/formulas/physics/college/f9nst6r840x0l65e07uqvcdmy9uiqnsczc.png)
![v_(max) = √(gL \ cos (0))](https://img.qammunity.org/2021/formulas/physics/college/be4kyfxp86r5gsprpykak5i88oee95rpwu.png)
![v_(max) = √(gL * 1)](https://img.qammunity.org/2021/formulas/physics/college/caqsypzl6eyeqgf70cz03l8kcumhau4psv.png)
![\mathbf{v_(max) = √(gL)}](https://img.qammunity.org/2021/formulas/physics/college/4u5kk7qg91ew7sza7rhlftaf5phv59ofyr.png)
Hence; the maximum walking speed for the person is
![\mathbf{v_(max) = √(gL)}](https://img.qammunity.org/2021/formulas/physics/college/4u5kk7qg91ew7sza7rhlftaf5phv59ofyr.png)