119k views
2 votes
PLEASE HELP ME GUYS OR I WONT PASS
this calculus!!!!​

PLEASE HELP ME GUYS OR I WONT PASS this calculus!!!!​-example-1
User Jansen
by
6.2k points

1 Answer

6 votes

Answer:

b.
\displaystyle (1)/(2)

General Formulas and Concepts:

Pre-Algebra

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right

Algebra I

  • Functions
  • Function Notation
  • Exponential Rule [Rewrite]:
    \displaystyle b^(-m) = (1)/(b^m)
  • Exponential Rule [Root Rewrite]:
    \displaystyle \sqrt[n]{x} = x^{(1)/(n)}

Calculus

Derivatives

Derivative Notation

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Derivative Rule [Chain Rule]:
\displaystyle (d)/(dx)[f(g(x))] =f'(g(x)) \cdot g'(x)

Explanation:

Step 1: Define

Identify


\displaystyle H(x) = \sqrt[3]{F(x)}

Step 2: Differentiate

  1. Rewrite function [Exponential Rule - Root Rewrite]:
    \displaystyle H(x) = [F(x)]^\bigg{(1)/(3)}
  2. Chain Rule:
    \displaystyle H'(x) = (d)/(dx) \bigg[ [F(x)]^\bigg{(1)/(3)} \bigg] \cdot (d)/(dx)[F(x)]
  3. Basic Power Rule:
    \displaystyle H'(x) = (1)/(3)[F(x)]^\bigg{(1)/(3) - 1} \cdot F'(x)
  4. Simplify:
    \displaystyle H'(x) = (F'(x))/(3)[F(x)]^\bigg{(-2)/(3)}
  5. Rewrite [Exponential Rule - Rewrite]:
    \displaystyle H'(x) = \frac{F'(x)}{3[F(x)]^\bigg{(2)/(3)}}

Step 3: Evaluate

  1. Substitute in x [Derivative]:
    \displaystyle H'(5) = \frac{F'(5)}{3[F(5)]^\bigg{(2)/(3)}}
  2. Substitute in function values:
    \displaystyle H'(5) = \frac{6}{3(8)^\bigg{(2)/(3)}}
  3. Exponents:
    \displaystyle H'(5) = (6)/(3(4))
  4. Multiply:
    \displaystyle H'(5) = (6)/(12)
  5. Simplify:
    \displaystyle H'(5) = (1)/(2)

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Derivatives

Book: College Calculus 10e

User Zozelfelfo
by
5.7k points