Given:
Diagonal of the rectangle = 20 inches
The length of the rectangle is to be 8 inches more than twice the width.
To find:
The dimensions of the rectangle.
Solution:
Let width of the rectangle be x inches.
Then, length = 2x+8 inches
We know that, diagonal of a rectangle is
![Diagonal=√(length^2+width^2)](https://img.qammunity.org/2021/formulas/mathematics/college/s1tcgx7lgblfz0esih66sqrzz9ojp0t3cm.png)
![20=√((2x+8)^2+x^2)](https://img.qammunity.org/2021/formulas/mathematics/college/6z8nxc3j71pk0m3l20374cqz9cf9ew4m71.png)
Taking square both sides.
![400=4x^2+32x+64+x^2](https://img.qammunity.org/2021/formulas/mathematics/college/axqxht9646jm8p8yualaz3x7cowp7wcdhn.png)
![0=5x^2+32x+64-400](https://img.qammunity.org/2021/formulas/mathematics/college/sss8q82xm7htizjx8w1cvzu977z2f2j1c6.png)
![0=5x^2+32x-336](https://img.qammunity.org/2021/formulas/mathematics/college/xvg61odupkz4s9t2xsu7zdlab9b10qfzs5.png)
Splitting the middle term, we get
![5x^2+60x-28x-336=0](https://img.qammunity.org/2021/formulas/mathematics/college/qd433h39yz7vbapiepcgwa0d6bns62vfrt.png)
![5x(x+12)-28(x+12)=0](https://img.qammunity.org/2021/formulas/mathematics/college/xpf94qwhhsg35sq15sbo0x0zpokuoca1q2.png)
![(x+12)(5x-28)=0](https://img.qammunity.org/2021/formulas/mathematics/college/pimngbgc1hs2r42ij91261h6lngmwwafkx.png)
Using zero product property, we get
![x=-12, x=(28)/(5)=5.6](https://img.qammunity.org/2021/formulas/mathematics/college/s6kczcoh5t5ghoo1ngmi7h9jb4rz153f65.png)
Side length cannot be negative. So, only value of x is
.
Now,
Width = 5.6 inches
Length
![=2(5.6)+8](https://img.qammunity.org/2021/formulas/mathematics/college/nmznouth4zkphj56ceqhsxqc7vspwywoye.png)
![=11.2+8](https://img.qammunity.org/2021/formulas/mathematics/college/shxvxptou2gynije9gqps8bvhnyp1p4k47.png)
inches
Therefore, the length of rectangle is 19.2 inches and width of the rectangle is 5.6 inches.